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Abstract. While nonlinear stochastic partial differential equations arise naturally in spatiotemporal modeling, inference for

such systems often faces two major challenges: sparse noisy data and ill-posedness of the inverse problem of parameter es-

timation. To overcome the challenges, we introduce a strongly regularized posterior by normalizing the likelihood and by

imposing physical constraints through priors of the parameters and states.

We investigate joint parameter-state estimation by the regularized posterior in a physically motivated nonlinear stochastic5

energy balance model (SEBM) for paleoclimate reconstruction. The high-dimensional posterior is sampled by a particle Gibbs

sampler that combines MCMC with an optimal particle filter exploiting the structure of the SEBM. In tests using either Gaus-

sian or uniform priors based on the physical range of parameters, the regularized posteriors overcome the ill-posedness and lead

to samples within physical ranges, quantifying the uncertainty in estimation. Due to the ill-posedness and the regularization,

the posterior of parameters presents a relatively large uncertainty, and consequently, the maximum of the posterior, which is10

the minimizer in a variational approach, can have a large variation. In contrast, the posterior of states generally concentrates

near the truth, substantially filtering out observation noise and reducing uncertainty in the unconstrained SEBM.

1 Introduction

Physically motivated nonlinear stochastic (partial) differential equations (SDEs and SPDEs) are natural models of spatiotem-

poral processes with uncertainty in geoscience. In particular, such models arise in the problem of reconstructing geophysical15

fields from sparse and noisy data (see e.g. Sigrist et al., 2015; Guillot et al., 2015; Tingley et al., 2012, and the references

therein). The nonlinear differential equations, derived from physical principles, often come with unknown but physically con-

strained parameters also to be determined from data. This promotes the problem of joint state-parameter estimation from sparse

and noisy data. When the parameters are interrelated, which is often the case in nonlinear models, their estimation can be an

ill-posed inverse problem. Physical constraints on the parameters must then be taken into account. In variational approaches,20

physical constraints are imposed using a regularization term in a cost function, whose minimizer provides an estimator of

the parameters and states. In a Bayesian approach, the physical constraints are encoded in prior distributions, extending the

regularized cost function in the variational approach to a posterior and quantifying the estimation uncertainty. When the true

parameters are known, the Bayesian approach has demonstrated great success in state estimation, thanks to the developments
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in Monte Carlo sampling and data assimilation techniques (see e.g. Carrassi et al., 2018; Law et al., 2015; Vetra-Carvalho et al.,

2018). However, the problem of joint state-parameter estimation, especially when the parameter estimation is ill-posed, has

had relatively little success in nonlinear cases and remains a challenge (Kantas et al., 2009).

In this paper, we investigate a Bayesian approach for joint state and parameter estimation of a non-linear two-dimensional

stochastic energy balance model (SEBM) in the context of spatial-temporal paleoclimate reconstructions of temperature fields5

from sparse and noisy data (Tingley and Huybers, 2010; Steiger et al., 2014; Fang and Li, 2016; Goosse et al., 2010). In

particular, we consider a model of the energy balance of the atmosphere similar to those often used in idealized climate

models (e.g. Fanning and Weaver, 1996; Weaver et al., 2001; Rypdal et al., 2015) to study climate variability and climate

sensitivity. The use of such a model in paleoclimate reconstruction aims at improving the physical consistency of temperature

reconstructions during e.g. the last deglaciation and the Holocene by combining indirect observations, so called proxy data,10

with physically-motivated stochastic models.

The SEBM models surface air temperature, explicitly taking into account sinks, sources, and horizontal transport of energy

in the atmosphere, with an additive stochastic forcing incorporated to account for unresolved processes and scales. The model

takes the form of a nonlinear SPDE with unknown parameters to be inferred from data. These unknown parameters are asso-

ciated with processes in the energy budget (e.g. radiative transfer, air-sea energy exchange) that are represented in a simplified15

manner in the SEBM, and may change with a changing climate. The parameters must fall in a prescribed range such that the

SEBM is physically meaningful. Specifically, they must be in sufficiently close balance for the stationary temperature of the

SEBM to be within a physically realistic range. As we will show, the parametric terms arising from this physically-based model

are strongly correlated, leading to a Fisher information matrix that is ill-conditioned. Therefore, the parameter estimation is an

ill-posed inverse problem, and the maximum likelihood estimators of individual parameters have large variations and often fall20

out of the physical range.

To overcome the ill-posedness in parameter estimation, we introduce a new strongly regularized posterior by normalizing

the likelihood and by imposing the physical constraints through priors on the parameters and the states, based on physical

constraints and the climatological distribution. In the regularized posterior, the prior has the same weight as the normalized

likelihood to enforce the support of the posterior to be in the physical range. Such a regularized posterior is a natural extension25

of the regularized cost function in a variational approach: the maximum of the posterior (MAP) is the same as the minimizer

of the regularized cost function, but the posterior quantifies the uncertainty in the estimator.

The regularized posterior of the states and parameters is high-dimensional and non-Gaussian. It is represented by its samples,

which provide an empirical approximation of the distribution and allow efficient computation of quantities of interest such as

posterior means. The samples are drawn using a particle Gibbs sampler with ancestor sampling (PGAS, Lindsten et al., 2014), a30

special sampler in the family of particle Markov chain Monte Carlo (MCMC) methods (Andrieu et al., 2010) that combines the

strengths of both MCMC and sequential Monte Carlo methods (see e.g. Doucet and Johansen, 2011) to ensure the convergence

of the empirical approximation to the high-dimensional posterior. In the PGAS, we use an optimal particle filter that exploits

the forward structure of the SEBM.
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We consider two priors for the parameters, each based on their physical ranges: a uniform prior and a Gaussian prior with

three standard deviations inside the range. We impose a prior for the states based on their overall climatological distribution.

Tests show that the regularized posteriors overcome the ill-posedness and lead to samples of parameters and states within the

physical ranges, quantifying the uncertainty in their estimation. Due to the regularization, the posterior of the parameters is

supported on a relatively large range. Consequently, the MAP of the parameters has a large variation, and it is important to use5

the posterior to assess the uncertainty. In contrast, the posterior of the states generally concentrates near the truth, substantially

filtering out the observational noise and reducing the uncertainty in state reconstruction.

Tests also show that the regularized posterior is robust to spatial sparsity of observations, with sparser observations leading

to larger uncertainties. However, due to the need for regularization to overcome ill-posedness, the uncertainty in the posterior

of the parameters can not be eliminated by increasing the number of observations in time. Therefore, we suggest alternative10

approaches, such as re-parametrization of the nonlinear function according to the climatological distribution or nonparametric

Bayesian inference (see e.g. Müller and Mitra, 2013; Ghosal and Van der Vaart, 2017), to avoid ill-posedness.

The rest of the paper is organized as follows. Section 2 introduces the SEBM and its discretization, and formulates a state-

space model. We also outline in this section the Bayesian approach to the joint parameter-state estimation and the particle

MCMC samplers. Section 3 analyzes the ill-posedness of the parameter estimation problem and introduces the regularized15

posterior. The regularized posterior is sampled by PGAS and numerical results are presented in Section 4. Discussions and

conclusions are presented in Sections 5 and 6. Technical details of the estimation procedure are described in Appendix A.

2 State-space model formulation

After providing a brief physical introduction to the SEBM, we present its discretization and the observation model by repre-

senting them as a state-space model suitable for application of sequential Monte Carlo methods in Bayesian inference.20

2.1 The stochastic energy balance model

The SEBM describes the evolution in space (both latitude and longitude) and time of the surface air temperature u(t,ξ):

∂tu(t,ξ)− ν∆u(t,ξ) = gθ(u) + f(t,ξ), (1)

where ξ ∈ [−π,π]× [−π/2,π/2] is the two-dimensional coordinate on the sphere and the solution u(t,ξ) is periodic in longi-

tude. Horizontal energy transport is represented as diffusion with diffusivity ν, while sources and sinks of atmospheric internal25

energy are represented by the nonlinear function gθ(u)

gθ(u) = θ0 + θ1u+ θ4u
4, (2)

with the unknown parameters θ. Upper and lower bounds of these three parameters, shown in Table 1, are derived from the

energy balance model in Fanning and Weaver (1996), adjusted to current estimates of the Earth’s global energy budget from

Trenberth et al. (2009) using appropriate simplifications. The equilibrium solution of the SEBM for the average values of the30
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Table 1. The physical upper and lower bounds of the parameters in the SEBM.

θ0 θ1 θ4

upper bound 32.57 -22.70 -4.80

lower bound 27.64 -25.46 -6.00

parameters approximates the current global mean temperature closely, and the magnitude of sinks and sources approximates

the respective magnitudes in Trenberth et al. (2009) well. The physical ranges of the parameters are very conservative and cover

current estimates of the global mean temperature during the Quaternary (Snyder, 2016). The state variable and the parameters

in the model have been nondimensionalized so that the equilibrium solution of Eqn. (1) with f = 0 is approximately equal to

one.5

The quartic nonlinearity of the function gθ(u) arises from the Stefan-Boltzmann dependence of long-wave radiative fluxes

on atmospheric temperature, while a linear feedback is included to represent state dependence of e.g. surface energy fluxes and

albedo. Inclusion of quadratic and cubic nonlinarities in gθ(u) (to account for nonlinearities in the feedbacks just noted) was

found to exacerbate the ill-posedness of the model without qualitatively changing the character of the model dynamics within

the parameter range appropriate for the study of Quaternary climate variability (e.g. without admitting multiple deterministic10

equilibria associated with the ice-albedo feedback). In reality, the diffusivity ν and the parameters θj , j = (0,1,4) will depend

on latitude, longitude, and time. We will neglect this complexity in our idealized analysis.

The stochastic term f(t,ξ), which models the net effect of unresolved or oversimplified processes in the energy budget, is

a centered Gaussian field that is white in time and colored in space, specified by an isotropic Matérn covariance function with

order α= 1 and scale ρ > 0. That is,15

E [f(t,ξ)f(s,η)] = δ(t− s)C(|ξ− η|), (3)

with the covariance kernel C(r) being the Matérn covariance kernel given by

Cα(r) = σ2
f

21−α

Γ(α)

(√
2α
r

ρ

)α
Kα

(√
2α
r

ρ

)
, (4)

where Γ is the gamma function, ρ is a scaling factor, and Kα is the modified Bessel function of the second kind. We focus

on the estimation of the parameters θ and assume that ν and the parameters of f are known. Estimating ν in energy balance20

models with data assimilation methods is studied in Annan et al. (2005), whereas estimation of parameters of f in the context

of linear SPDEs is covered for example in Lindgren et al. (2011).

In a paleoclimate context, temperature observations are sparse (in space and time) and derived from climatic proxies, such

as pollen assemblages, isotopic compositions, and tree rings, that are indirect measures of the climate state. To simplify our

analysis, we neglect the potentially nonlinear transformations associated with the proxies and focus on the effect of observa-25

tional sparseness. This is a common strategy in the testing of climate field reconstruction methods (e.g. Werner et al., 2013).
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As such, we take the data to be noisy observations of the solution at do locations:

yi(t) =Hi(u(t)) + εi(t) = u(t,ξi) + εi(t), (5)

for i= 1, . . . ,do, where each ξi ∈ [−π,π]× [−π/2,π/2] is a location of observation,H is the observation operator, and εi(t)∼
N (0,σ2

ε ) are iid Gaussian noise. The data are sparse in the sense that only a small number of the spatial locations are observed.

2.2 State-space model representation5

In practice, the differential equations are represented by their discretized systems and the observations are discrete in time,

therefore we consider only the state space model based on a discretization of the SEBM. We refer the reader to Prakasa Rao

(2001); Apte et al. (2007); Hairer et al. (2007); Maslowski and Tudor (2013); Llopis et al. (2018) for studies about inference

of SPDEs in a continuous-time setting.

2.2.1 The state model10

We discretize the SPDE (1) using linear finite elements in space and a semi-backward Euler method in time, using the compu-

tationally efficient Gaussian Markov random field approximation of the Gaussian field by Lindgren et al. (2011) (see details in

Section A1). We write the discretized equation as a standard state space model:

Un+1 = µθ(Un) +Wn (6)

where µθ : Rdb → Rdb is the deterministic function and {Wn} is a sequence of iid Gaussian noise with mean zero and covari-15

ance R described in more detail in Section (A19). Therefore, the transition probability density pθ(un+1|un), the probability

density of Un+1 conditional on Un and θ, is

pθ(un+1|un) = det(2πR)−1/2 exp
(
− (un+1−µθ(un))TR−1(un+1−µθ(un))

2

)
. (7)

2.2.2 The observation model

In discrete form, we assume that the locations of observation are the nodes of the finite elements. Then the observation function20

in (5) is simply Hi(Un) = Un,ki with ki ∈ {1, . . . ,d} denoting the index of the node under observation, for i= 1, . . . ,d0, and

we can write the observation model as

Yn = HUn + εn, yn ∈ Rdo , (8)

where H ∈ Rdo×db is called the observation matrix, and {εn} is a sequence of iid Gaussian noise with distribution N (0,Q),

where Q = Diag{σ2
i }. Equivalently, the probability of observing yn given state Un is25

p(yn|Un) = det(2πQ)−1/2 exp
(
− (yn−HUn)TQ−1(yn−HUn)

2

)
. (9)
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2.3 Bayesian inference for SSM

Given observations y1:N := (y1, . . . ,yN ), our goal is to jointly estimate the state U1:N := (U1, . . . ,UN ) and the parameter

vector θ := (θ0,θ1,θ4) in the state-space model (6)-(9). The Bayesian approach estimates the joint distribution of (U1:N ,θ)

conditional on the observations by drawing samples to form an empirical approximation of the high-dimensional posterior.

The empirical posterior efficiently quantifies the uncertainty in the estimation. Therefore, the Bayesian approach has been5

widely used (see the review Kantas et al., 2009, and the references therein).

Following Bayes’ rule, the joint posterior distribution of (U1:N ,θ) can be written as

p(θ,u1:N |y1:N ) = p(θ)
pθ(u1:N )pθ(y1:N |u1:N )

pθ(y1:N )
, (10)

where p(θ) is the prior of the parameters and pθ(y1:N ) =
∫
pθ(u1:N )pθ(y1:N |u1:N )du1:N is the unknown marginal probability

density function of the observations. In the importance sampling approximation to the posterior, we do not need to know the10

value of pθ(y1:N ), because as a normalizing constant, and it will be cancelled out in the importance weights of samples. The

quantity pθ(y1:N |u1:N ) is the likelihood of the observations y1:N conditional on the state U1:N and the parameter θ, which can

be explicitly derived from the observation model (8):

pθ(y1:N |u1:N ) = p(y1:N |u1:N ) =
∏

n

p(yn|un), (11)

with p(yn|un) given in (9). Finally, the probability density function of the state U1:N given parameter θ can be derived from15

the state model (6):

pθ(u1:N ) = pθ(u1)
N−1∏

n=1

pθ(un+1|un), (12)

with pθ(un+1|un) specified by (7).

2.4 Sampling the posterior by particle MCMC methods

In practice, we are interested in the expectation of quantities of interest or the probability of certain events. These computations20

involve integrations of the posterior that can neither be computed analytically nor by numerical quadrature methods due to the

curse of dimensionality: the posterior is a high-dimensional non-Gaussian distribution involving variables with a dimension

at the scale of thousands to millions. Monte Carlo methods generate samples to approximate the posterior by the empirical

distribution, so that quantities of interest can be computed efficiently.

Markov Chain Monte Carlo (MCMC) methods are popular Monte Carlo methods (see e.g. Liu, 2001) that generate samples25

along a Markov chain with the posterior as the invariant measure. For joint distributions of parameters and states, a standard

MCMC method is Gibbs sampling which consists of alternatively updating the state variable U1:N conditional on θ and y1:N

by sampling

p(u1:N |θ,y1:N ) =
pθ(u1:N )pθ(y1:N |u1:N )

pθ(y1:N )
, (13)
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and then updating the parameter θ conditional on U1:N = u1:N by sampling the marginal posterior of θ:

p(θ|u1:N ,y1:N ) = p(θ|u1:N ) = p(θ)pθ(u1:N ). (14)

Due to the high-dimensionality of U1:N , a major difficulty in sampling p(u1:N |θ,y1:N ) is the design of efficient proposal

densities that can effectively explore the support of p(u1:N |θ,y1:N ).

Another group of rapidly-developing MC methods are sequential Monte Carlo (SMC) methods (Cappé et al., 2005; Doucet5

and Johansen, 2011) that exploit the sequential structure of state space models to approximate the posterior densities p(u1:n|θ,y1:N )

sequentially. SMC methods are efficient but suffer from the well-known problem of depletion (or degeneracy), in which the

marginal distribution p(un|θ,y1:N ) becomes concentrated on a single sample as N −n increases (see Section A2 for more

details).

The particle MCMC methods introduced in Andrieu et al. (2010) provide a framework for systematically combining SMC10

methods with MCMC methods, exploiting the strengths of both techniques. In the particle MCMC samplers, SMC algorithms

provide high-dimensional proposal distributions, and Markov transitions guide the SMC ensemble to sufficiently explore the

target distribution. The transition is realized by a conditional SMC technique, in which a reference trajectory from the previous

step is kept throughout the current step of SMC sampling.

In this study, we sample the posterior by PGAS (Lindsten et al., 2014), a particle MCMC method that enhances the mixing15

of the Markov chain by sampling the ancestor of the reference trajectory. For the SMC, we use an optimal particle filter,

which takes advantage of the linear Gaussian observation model and the Gaussian transition density of the state variables in

our current SEBM. More generally, when the observation model is nonlinear and the transition density is non Gaussian, the

optimal particle filter can be replaced by implicit particle filters (Chorin and Tu, 2009; Morzfeld et al., 2012) or local particle

filters (Penny and Miyoshi, 2016; Poterjoy, 2016); we refer to (Carrassi et al., 2018; Law et al., 2015; Vetra-Carvalho et al.,20

2018) for other data assimilation techniques. The details of the algorithm are provided in Section A3.

3 Ill-posedness and regularized posteriors

In this section, we first demonstrate and then analyze the failure of standard Bayesian inference of the parameters with the

posteriors in (10). The standard Bayesian inference of the parameters fails in the sense that the posterior (10) tends to have

a large probability mass at non-physical parameter values. In the process of approximating the posterior by samples, the25

values of these samples often either hit the (upper or lower) bounds in Table 1 when we use a uniform prior or exceed these

bounds when we use a Gaussian prior. As we shall show next, the standard Bayesian inverse problem is numerically ill-posed

because the Fisher information matrix is ill-conditioned, which makes the inference numerically unreliable. Following the idea

of regularization in variational approaches, we propose to use regularized posteriors in the Bayesian inference. This approach

unifies the Bayesian and the variational approaches: the MAP is the minimizer of the regularized cost function in the variational30

approach, but the Bayesian approach quantifies the uncertainty of the estimator by the posterior.
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Table 2. The priors of θ = (θ0,θ1,θ4) based on the physical constraints in Table 1.

Uniform prior [27.64, 32.57]×[-25.46, -22.70]×[-6.00, -4.80]

Gaussian prior mean = (30.11,−24.08,−5.40)

covariance = Diag(0.822, 0.462, 0.202)

Table 3. The settings of the stochastic energy balance model and its discretization.

ν = 0.1 Diffusion constant

σf = 0.1 Scale of the stochastic forcing

∆t = 0.01 Time step size

db = 12 Number of total nodes

do = 6 Number of observed nodes

σε = 0.01 Std of the observation noise

3.1 Model settings and tests

Based on the physical upper and lower bounds in Table 1, we consider two priors for the parameters: a uniform distribution on

these intervals and a Gaussian distribution centered at the median and with three standard deviations in the interval, as listed in

Table 2.

Throughout this study, we shall consider a relatively small numerical mesh for the SPDE with only 12 nodes for the finite5

elements. Such a small mesh provides a toy model that can neatly represent the spatial structure on the sphere, while allowing

for systematic assessments of statistical properties of the Bayesian inference with moderate computational costs. Numerical

tests show that the above FEM semi-backward Euler scheme is stable for a time step size ∆t= 0.01 and a stochastic forcing

with scale σf = 0.1 (see Section A1 for more details about the discretization). A typical realization of the solution is shown in

Figure 1 (left and middle), where we present the solution on the sphere at a fixed time with the 12-node finite element mesh,10

as well as the trajectories of all 12 nodes.

The standard deviation of the observation noise is set to σε = 0.01, i.e. one order of magnitude smaller than the stochastic

forcing and two orders of magnitude smaller than the climatological mean.

We first assume that six out of the 12 nodes are observed; we discuss results obtained using sparser or denser observations

in the discussion section. Figure 1 also shows the climatological probability histogram of the true state variables and the15

partial noisy observations. The climatological distribution of the observations is close to that of the true state variables (with a

slightly larger variance due to the noise). The histograms show that the state variables are centered around 1 and vary mostly

in the interval [0.92,1.05]. We shall use a Gaussian approximation based on the climatological distribution of the partial noisy

observations as a prior to constrain the state variables.

We summarize the settings of numerical tests in Table 3.20
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properties of the Bayesian inference with moderate computational costs. Numerical tests show that
the above FEM semi-backward Euler scheme is stable for a time step size �t “ 0.01 and a stochastic
forcing with scale �f “ 0.1 (see Section 7.1 for more details about the discretization). A typical
realization of the solution is shown in Figure 1 (left and middle), where we present the solution on
the sphere at a fixed time with the 12-node finite element mesh, as well as the trajectories of all
12 nodes.
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Figure 1: A typical realization of the solution to the SEB. Left: the solution at time step n “ 10
on the sphere with the 12-node finite element mesh. Middle: the trajectories of all 12 nodes over
100 time steps. Right: histogram estimates of the climatological probability distribution of all
nodes of the true states (salmon) and the observations (blue).

The standard deviation of the observation noise is set to be �✏ “ 0.01, i.e. one order of magnitude
smaller than the stochastic forcing and two order of magnitude smaller than the climatological
mean. We first assume that six out of the 12 nodes are observed; we discuss results obtained using
sparser or denser observations in the discussion section. Figure 1 also shows the climatological
probability histogram of the true state variables and the partial noisy observations. The climato-
logical distribution of the observations is close to that of the true state variables (with a slightly
larger variance due to the noise). The histograms show that the state variables are centered around
1 and vary mostly in the interval r0.92, 1.05s. We shall use a Gaussian approximation based on
the climatological distribution of the partial noisy observations as a prior to constrain the state
variables.
We summarize the settings of the numerical tests in Table 3.

3.2 Ill-posedness of the standard Bayesian inference of parameters

By the Bernstein-von Mises theorem (see e.g. [49, Chaper 10]), the posterior distribution of the
parameters conditional on the true state data approaches the likelihood distribution as the data
size increases. That is, pp✓|u1:Nq in (2.12) becomes close to the likelihood distribution ppu1:N |✓q
(which can be viewed as a distribution of ✓) as the data size increases. Therefore, if the likelihood
distribution is numerically degenerate (in the sense that some components are undetermined),
then the Bayesian posterior will also become close to degenerate, so that the Bayesian inference
for parameter estimation will be ill-posed. In the following, we show that for this model the
likelihood is degenerate even if the full states are observed with zero observation noise and that
the maximum likelihood estimators have large nonphysical fluctuations (particularly when the

9

Figure 1. A typical realization of the solution to the SEBM. Left: the solution at time step n= 10 on the sphere with the 12-node finite

element mesh. Middle: the trajectories of all 12 nodes over 100 time steps. Right: histogram estimates of the climatological probability

distribution of all nodes of the true states (salmon) and the observations (blue).

3.2 Ill-posedness of the standard Bayesian inference of parameters

By the Bernstein-von Mises theorem (see e.g. Van der Vaart, 2000, Chaper 10), the posterior distribution of the parameters

conditional on the true state data approaches the likelihood distribution as the data size increases. That is, p(θ|u1:N ) in (14)

becomes close to the likelihood distribution p(u1:N |θ) (which can be viewed as a distribution of θ) as the data size increases.

Therefore, if the likelihood distribution is numerically degenerate (in the sense that some components are undetermined), then5

the Bayesian posterior will also become close to degenerate, so that the Bayesian inference for parameter estimation will be

ill-posed. In the following, we show that for this model the likelihood is degenerate even if the full states are observed with

zero observation noise and that the maximum likelihood estimators have large nonphysical fluctuations (particularly when the

states are noisy). As a consequence, the standard Bayesian parameter inference fails by yielding nonphysical samples.

We show first that the likelihood distribution is numerically degenerate because the Fisher information matrix is ill-conditioned.10

Following the transition density (7), the log-likelihood of the state {u1:N} is

l(θ,u1:N ) = c− 1
2

N∑

n=1

(un+1−µθ(un))TR−1(un+1−µθ(un)), (15)

where c is a constant independent of (θ,u1:N ). Since µθ(·) is linear in θ (cf. Equation (A19)), the likelihood function is

quadratic in θ and the corresponding scaled Fisher information matrix is

FN =
1
N

(
N∑

n=1

Gθ,k(un)TR−1Gθ,l(un)

)

k,l=0,1,4

, (16)15

where the vectors Gθ,k(un) ∈ Rdb are defined in (A20). Figure 2 shows the means and standard deviations of the condition

numbers (the ratio between the maximum and the minimum singular values) of the Fisher information matrices from 100
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states are noisy). As a consequence, the standard Bayesian parameter inference fails by yielding
nonphysical samples.

We show first that the likelihood distribution is numerically degenerate because the Fisher infor-
mation matrix is ill-conditioned. Following the transition density (2.6), the log-likelihood of the
state tu1:Nu is

lp✓, u1:Nq “ ´1

2

Nÿ

n“1

pun`1 ´ µ✓punqqTR´1pun`1 ´ µ✓punqq ` c,

where c is a constant independent of p✓, u1:Nq. Since µ✓p¨q is linear in ✓ (cf. Equation (7.8)), the
likelihood function is quadratic in ✓ and the corresponding scaled Fisher information matrix is

FN “ 1

N

˜
Nÿ

n“1

G✓,kpunqTR´1G✓,lpunq
¸

k,l“0,1,4

,

where the vectors G✓,kpunq P Rdb are defined in (7.9). Figure 2 shows the means and standard
deviations of the condition numbers (the ratio between the maximum and the minimum singu-
lar values) of the Fisher information matrices from 100 independent simulations. Each of these
simulations generates a long trajectory of length 105 using a parameter drawn randomly from the
prior, and computes the Fisher information matrices using the true trajectory of all 12 nodes, for
subsamples of lengths N ranging from 102 to 105. For both Gaussian and uniform priors, the
condition numbers are on the scale of 108 ´ 1011 and therefore the Fisher information matrix is
ill-conditioned. In particular, the condition number increases as the data size increased, due to
the ill-posedness of the inverse problem of parameter estimation.
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(b) Uniform prior

Figure 2: The mean and standard deviation of the condition numbers of the Fisher information
matrices, computed using true trajectories, out of 100 simulations of length ranging from N “ 102

to 105. The condition numbers are at the scale of 108 ´1011, indicating that the Fisher information
matrix is ill-conditioned.

The ill-conditioned Fisher information matrix leads to highly variable maximum likelihood estima-
tors (MLE), computed from FN✓ “ bN with bN “ 1

N

´∞N
n“1 G✓,kpunqTR´1pun`1 ´ M´1

�tM0unq
¯

k“0,1,4
,

10

Figure 2. The mean and standard deviation of the condition numbers of the Fisher information matrices, computed using true trajectories,

out of 100 simulations of length ranging from N = 102 to 105. The condition numbers are at the scale of 108− 1011, indicating that the

Fisher information matrix is ill-conditioned.

independent simulations. Each of these simulations generates a long trajectory of length 105 using a parameter drawn randomly

from the prior, and computes the Fisher information matrices using the true trajectory of all 12 nodes, for subsamples of lengths

N ranging from 102 to 105. For both Gaussian and uniform priors, the condition numbers are on the scale of 108− 1011

and therefore the Fisher information matrix is ill-conditioned. In particular, the condition number increases as the data size

increased, due to the ill-posedness of the inverse problem of parameter estimation.5

The ill-conditioned Fisher information matrix leads to highly variable maximum likelihood estimators (MLE), computed

from FNθ = bN with bN = 1
N

(∑N
n=1Gθ,k(un)TR−1(un+1−M−1

∆tM0un)
)
k=0,1,4

, which follows from (A20).

The ill-posedness is particularly problematic when {u1:N} is observed with noise, as the ill-conditioned Fisher information

matrix amplifies the noise in observations and leads to nonphysical estimators. Figure 3 shows the means and standard devia-

tions of errors of MLEs computed from true and noisy trajectories in 100 independent simulations. In each of these simulations,10

the “noisy” trajectory is obtained by adding a white noise with standard deviation σε = 0.01 to a “true” trajectory generated

from the system with a true parameter randomly drawn from the prior. For both Gaussian and uniform priors, the standard

deviations and means of the errors of the MLE from the noisy trajectories are one order of magnitude larger than those from

true trajectories. In particular, the variations are large when the data size is small. For example, when N = 100, the standard

deviation of the MLE for θ0 from noisy observations is on the order of 103, two orders of magnitude larger than its physical15

range in Table 2. The standard deviations decrease as the data size increases, at the expected rate of 1/
√
N . However, the errors

are too large to be practically reduced by increasing the size of data: for example, a data size N = 1010 is needed to reduce the

standard deviation of θ4 to less than 0.1 (which is about 10% the size of the physical range [−6.00,−4.80] as specified in Table

2). In summary, the ill-posedness leads to parameter estimators with large variations that are far outside the physical ranges of

the parameters.20
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which follows from (7.9).
The ill-posedness is particularly problematic when tu1:Nu is observed with noise, as the ill-conditioned
Fisher information matrix amplifies the noise in observations and leads to nonphysical estimators.
Figure 3 shows the means and standard deviations of errors of MLEs computed from true and noisy
trajectories in 100 independent simulations. In each of these simulations, the “noisy” trajectory is
obtained by adding a white noise with standard deviation �✏ “ 0.01 to a “true” trajectory gener-
ated from the system with a true parameter randomly drawn from the prior. For both Gaussian
and uniform priors, the standard deviations and means of the errors of the MLE from the noisy
trajectories are one order of magnitude larger than those from true trajectories. In particular,
the variations are large when the data size is small. For example, when N “ 100, the standard
deviation of the MLE for ✓0 from noisy observations is on the order of 103, two orders of magnitude
larger than its physical range in Table 2. The standard deviations decrease as the data size in-
creases, at the expected rate of 1{?

N . However, the errors are too large to be practically reduced
by increasing the size of data: for example, a data size N “ 1010 is needed to reduce the standard
deviation of ✓4 to less than 0.1 (which is about 10% the size of the physical range r´6.00, ´4.80s
as specified in Table 2). In summary, the ill-posedness leads to parameter estimators with large
variations that are far outside the physical ranges of the parameters.
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Figure 3: The standard deviations and means of the errors of the MLEs, computed from true
and noisy trajectories, out of 100 independent simulations with true parameters sampled from the
Gaussian and uniform priors. In all cases, the deviations and biases (i.e. means of errors) are large.
In particular, in the case of noisy observations, the deviations are at orders ranging from 10 to
1000, far beyond the physical ranges of the parameters in Table 1. Though the deviations decrease
as data size increases, an impractically large data size is needed to reduce them to a physical range.
Also, the means of errors are larger than the size of physical ranges of the parameters with values
that decay slowly as data size increases.
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Figure 3. The standard deviations and means of the errors of the MLEs, computed from true and noisy trajectories, out of 100 independent

simulations with true parameters sampled from the Gaussian and uniform priors. In all cases, the deviations and biases (i.e. means of errors)

are large. In particular, in the case of noisy observations, the deviations are at orders ranging from 10 to 1000, far beyond the physical ranges

of the parameters in Table 1. Though the deviations decrease as data size increases, an impractically large data size is needed to reduce them

to a physical range. Also, the means of errors are larger than the size of physical ranges of the parameters with values that decay slowly as

data size increases.

3.3 Regularized posteriors

To overcome the ill-posedness of the parameter estimation problem, we introduce strongly regularized posteriors by normaliz-

ing the likelihood function. In addition, to prevent unphysical values of the states, we further regularize the state variables in

the likelihood by an uninformative climatological prior. That is, consider the regularized posterior:

pN (θ,u1:N |y1:N ) =
1
Z
p(θ)

[
pc(u1:N )pθ(u1:N )pθ(y1:N |u1:N )

pθ(y1:N )

]1/N

, (17)5

where Z :=
∫
p(θ)

[
pc(u1:N )pθ(u1:N )pθ(y1:N |u1:N )

pθ(y1:N )

]1/N
dθdu1:N is a normalizing constant and pc(u1:N ) is the prior of the states

estimated from a Gaussian fit to climatological statistics of the observations, neglecting correlations. That is, we set pc(u1:N )

as

pc(u1:N ) :=
N∏

i=1

1
2πσdbc

exp
(
−|ui−uc|

2

2σ2
c

)
(18)

with σc = 2
√
σ2
o −σ2

ε , where uc and σo are the mean and standard deviation of the observations over all states. Here the10

multiplicative factor 2 aims for a larger band to avoid an overly narrow prior for the states.

This prior can be viewed as a joint distribution of the state variables assuming all components are independent identically

Gaussian distributed with mean uc and variance σ2
c . Clearly, it uses the minimum amount of information about the state
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variables, and we expect it can be improved by taking into consideration spatial correlations or additional field knowledge in

practice.

The regularized posterior can be viewed as an extension of the regularized cost function in the variational approach. In

fact, the negative logarithm of the regularized posterior is the same (up to a multiplicative factor 1
N and an additive constant

logZ − 1
N logpθ(y1:N )) as the cost function in variational approaches with regularization. More precisely, we have5

− logpN (θ,u1:N |y1:N ) =
1
N
Cy1:N (θ,u1:N ) + logZ − 1

N
logpθ(y1:N ), (19)

where Cy1:N (θ,u1:N ) is the cost function with regularization:

Cy1:N (θ,u1:N ) = −
N∑

n=1

log
[
p(un|un−1,θ)p(yn|un)

]
−N logp(θ)− logpc(u1:N ). (20)

When the prior is Gaussian, the regularization corresponds to Tikhonov regularization. Therefore, the regularized posterior ex-

tends the regularized cost function to a probability distribution, with the maximum of the posterior (MAP) being the minimizer10

of the regularized cost function.

The regularized posterior normalizes the likelihood by an exponent 1/N . This normalization allows for a larger weight (more

trust) on the prior, which can then sufficiently regularize the singularity in the likelihood and therefore reduces the probability

of nonphysical samples. Intuitively, it avoids the shrinking of the likelihood as the data size increases. When the system is

ergodic, the sum 1
N

∑N
n=1 log

[
pθ(un|un−1)p(yn|un)

]
converges to the spatial average E[log

[
pθ(Un|Un−1)p(yn|Un)] with15

respect to the invariant measure as N increases. While being effective, this factor may not be optimal (O’Leary, 2001) and we

leave the exploration of optimal regularization factors to future work.

In the sampling of the regularized posterior, we update the state variable U1:N conditionally on θ and y1:N by sampling

pc(u1:N )pθ(u1:N |θ,y1:N ) (with pθ(u1:N |θ,y1:N ) specified in (13)) using SMC methods. Compared to the standard PMCMC

algorithm outlined in Section 2.4, the only difference occurs when we update the parameter θ conditional on the estimated20

states u1:N . Instead of (14), we draw a sample of θ from the regularized posterior

pN (θ|u1:N ,y1:N ) ∝ p(θ)[pθ(u1:N )]1/N . (21)

4 Bayesian inference with regularized posteriors

The regularized posteriors are approximated by the empirical distribution of samples drawn using particle MCMC methods,

specifically particle Gibbs with ancestor sampling (PGAS, see Section A3) in combination with SMC using optimal importance25

sampling (see Section A2). In the following section, we first diagnose the Markov chain and choose a reasonable chain length

for subsequent analyses. We then present the results of parameter estimation and state estimation.

In all the tests presented in this study, we use only M = 5 particles for the SMC, as we can be confident of the Markov

chain produced by the particle MCMC methods converging to the target distribution based on theoretical results (see Andrieu
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Figure 4: The update rate of the states at different times along the trajectory. The high update
rate at time t “ 1 is due to the initialization of the particles near the equilibrium and the ancestor
sampling. The high update rate at the end time is due to the nature of the SMC filter. Note that
the uniform prior has update rates close to 1 at all times.
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Figure 5: The empirical autocorrelation functions (ACF) of the Markov chain of parameters
p✓0, ✓1, ✓4q and states Un,k at times n “ t10, 40, 90u and notes k “ t1, 8u, computed from a Markov
chain with length 10000. The ACFs fall within a threshold of 0.1 around zero within a time lag
about 25 for the Gaussian prior, and a time lag about 5 for the uniform prior.

rates of the Gaussian prior. Higher update rates occur for the uniform prior because the deviations
of parameter samples from the previous values are larger, resulting in an increased probability of
updating the reference trajectory in the conditional SMC.
We test the correlation length of the Markov chain by finding the smallest lag at which the empirical
autocorrelation functions (ACF) of the states and the parameters are close to zero. Figure 5 shows
the empirical ACFs of the parameters and states at representative nodes, computed using a Markov
chain with length 10000. The ACFs approach zero within a time lag of around 40 ( based on a
threshold value of 0.1) for the Gaussian prior, and within a time lag of around 5 for the uniform

14

Figure 4. The update rate of the states at different times along the trajectory. The high update rate at time t= 1 is due to the initialization of

the particles near the equilibrium and the ancestor sampling. The high update rate at the end time is due to the nature of the SMC filter. Note

that the uniform prior has update rates close to 1 at all times.

et al., 2010; Lindsten et al., 2014). In general, the more particles are used, the better the SMC algorithm (and hence the particle

MCMC methods) will perform, at the price of increased computational cost.

4.1 Diagnosis of the Markov Chain

To ensure that the Markov Chain generated by PGAS is well-mixed and to find a length for the chain such that the posterior

is acceptably approximated, we shall assess the Markov chain by three criteria: the update rate of states; the correlation length5

of the Markov chain; and the convergence of the marginal posteriors of the parameters. These empirical criteria are convenient

and, as we discuss below, have found to be effective in our study. We refer to Cowles and Carlin (1996) for a detailed review

of various criteria for diagnosing MCMC.

The update rate of states is computed at each time of the state trajectory u1:N along the Markov chain. That is, at each

time, we say the state is updated from the previous step of of the Markov chain if any entry of the state vector changes. The10

update rate measures the mixing of the Markov chain. In general, an update rate above 0.5 is preferred, but a high rate close

to 1 is not necessarily the best. Figure 4 shows the update rates of typical simulations for both the Gaussian prior and the

uniform prior. For both priors, the update rates are above 0.5, indicating a fast mixing of the chain. The rates tend to increase

with time (except for the first time step) to a value close to 1 at the end of the trajectory. This phenomenon agrees with the

particle depletion nature of the SMC filter: when tracing back in time to sample the ancestors, there are fewer particles and15

therefore the update rate is lower. The high update rate at time t= 1 step is due to our initialization of the particles near the

equilibrium, which increases the possibility of ancestor updates in PGAS. We also note that the uniform prior has update rates

close to 1 at all times, much higher than the rates of the Gaussian prior. Higher update rates occur for the uniform prior because
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Figure 4: The update rate of the states at different times along the trajectory. The high update
rate at time t “ 1 is due to the initialization of the particles near the equilibrium and the ancestor
sampling. The high update rate at the end time is due to the nature of the SMC filter. Note that
the uniform prior has update rates close to 1 at all times.
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Figure 5: The empirical autocorrelation functions (ACF) of the Markov chain of parameters
p✓0, ✓1, ✓4q and states Un,k at times n “ t10, 40, 90u and notes k “ t1, 8u, computed from a Markov
chain with length 10000. The ACFs fall within a threshold of 0.1 around zero within a time lag
about 25 for the Gaussian prior, and a time lag about 5 for the uniform prior.

rates of the Gaussian prior. Higher update rates occur for the uniform prior because the deviations
of parameter samples from the previous values are larger, resulting in an increased probability of
updating the reference trajectory in the conditional SMC.
We test the correlation length of the Markov chain by finding the smallest lag at which the empirical
autocorrelation functions (ACF) of the states and the parameters are close to zero. Figure 5 shows
the empirical ACFs of the parameters and states at representative nodes, computed using a Markov
chain with length 10000. The ACFs approach zero within a time lag of around 40 ( based on a
threshold value of 0.1) for the Gaussian prior, and within a time lag of around 5 for the uniform

14

Figure 5. The empirical autocorrelation functions (ACF) of the Markov chain of parameters (θ0,θ1,θ4) and states Un,k at times n=

{10,40,90} and notes k = {1,8}, computed from a Markov chain with length 10000. The ACFs fall within a threshold of 0.1 around zero

within a time lag about 25 for the Gaussian prior, and a time lag about 5 for the uniform prior.

Table 4. The settings of the particle MCMC using SMC with optimal importance densities.

M = 5 Number particles in SMC

L = 104 Length of the Markov chain

N = 100 Number of time steps of observations.

the deviations of parameter samples from the previous values are larger, resulting in an increased probability of updating the

reference trajectory in the conditional SMC.

We test the correlation length of the Markov chain by finding the smallest lag at which the empirical autocorrelation functions

(ACF) of the states and the parameters are close to zero. Figure 5 shows the empirical ACFs of the parameters and states at

representative nodes, computed using a Markov chain with length 10000. The ACFs approach zero within a time lag of around5

40 ( based on a threshold value of 0.1) for the Gaussian prior, and within a time lag of around 5 for the uniform prior. The

smaller correlation length in the uniform prior case is again due to the larger parameter variation in the uniform prior case than

the Gaussian prior case.

The relatively small decorrelation length of the Markov chain indicates that we can accurately approximate the posterior by

a chain of a relatively short length. This result is demonstrated in Figure 6, where we plot the empirical marginal posteriors of10

the parameters, using Markov chains of three different lengths: L= 1000,5000,10000. The marginal posteriors with L= 1000

are reasonably close to those with L= 104, and those with L= 5000 are almost identical to those with L= 104. In particular

the marginal posteriors with L= 103 capture the shape and spread of the distributions for L= 104. Therefore, a Markov chain

with length L= 104 provides a reasonably accurate approximation of the posterior. Hence, we use Markov chains with length
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Figure 6: The empirical marginal distributions of the samples from the posterior as the length of
the Markov chain increases. Note that the marginal posteriors converge rapidly as the lengths of
the chain increase. In particular, a chain with length 1000 provides a reasonable approximation to
the posterior, capturing the shape and spread of the distribution.

Table 4: The settings of the particle MCMC using SMC with optimal importance densities.

M “ 5 Number particles in SMC
L “ 104 Length of the Markov chain
N “ 100 Number of time steps of observations.

prior. The smaller correlation length in the uniform prior case is again due to the larger parameter
variation in the uniform prior case than the Gaussian prior case.
The relatively small decorrelation length of the Markov chain indicates that we can accurately
approximate the posterior by a chain of a relatively short length. This result is demonstrated in
Figure 6, where we plot the empirical marginal posteriors of the parameters, using Markov chains
of three different lengths: L “ 1000, 5000, 10000. The marginal posteriors with L “ 1000 are
reasonably close to those with L “ 104, and those with L “ 5000 are almost identical to those
with L “ 104. In particular the marginal posteriors with L “ 103 capture the shape and spread
of the distributions for L “ 104. Therefore, a Markov chain with length L “ 104 provides a
reasonably accurate approximation of the posterior. Therefore we use Markov chains with length
L “ 104 in all simulations from here on. This choice of chain length may be longer than necessary,
but allows for confidence that the results are robust.

In summary, based on the above diagnosis of the Markov chain generated by PMCMC, to run
many simulations for statistical analysis of the algorithm within a limited computation cost, we
use chains with length L “ 104 to approximate the posterior. For the SMC algorithm, we use only
five particles. The number of observations in time is N “ 100.

15

Figure 6. The empirical marginal distributions of the samples from the posterior as the length of the Markov chain increases. Note that

the marginal posteriors converge rapidly as the length of the chain increases. In particular, a chain with length 1000 provides a reasonable

approximation to the posterior, capturing the shape and spread of the distribution.

L= 104 in all simulations from here on. This choice of chain length may be longer than necessary, but allows for confidence

that the results are robust.

In summary, based on the above diagnosis of the Markov chain generated by PMCMC, to run many simulations for statistical

analysis of the algorithm within a limited computation cost, we use chains with length L= 104 to approximate the posterior.

For the SMC algorithm, we use only five particles. The number of observations in time is N = 100.5

4.2 Parameter estimation

One of the main goals in Bayesian inference is to quantify the uncertainty in the parameter-state estimation by the posterior.

We access the parameter estimation by examining the samples of the posterior in a typical simulation, for which we consider

the scatter plots and marginal distributions, the maximum of the posterior (MAP) and the posterior mean. We also examine

the statistics of the MAP and the posterior mean in 100 independent simulations. In each simulation, the parameters are drawn10

from the prior distribution of θ. Then, a realization of the SEBM is simulated. Finally, observations are created by applying the

observation model to the SEBM realization.

The empirical marginal posteriors of the parameters θ = (θ0,θ1,θ4) in two typical simulations, for the Gaussian and the

uniform priors, are shown in Figure 7. The top row presents scatter plots of samples along with the true values of the parameters

(asterisks), and the bottom row presents the marginal posteriors for each parameter in comparison with the priors.15

In the case of the Gaussian prior, the scatter plots show a posterior that is far from Gaussian, with clear nonlinear dependence

between θ0 and the other parameters. The marginal posteriors of θ0 and θ1 are close to their priors, with larger tails (to the left
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Figure 7: Posteriors of the parameters in a typical simulation, with both the Gaussian and the
uniform prior. The true values of the parameters, as well as the data trajectory, are the same for
both priors. The top row displays scatter plots of the samples (blue dots), with the true values of
the parameters shown by asterisks. The bottom row displays the marginal posteriors (blue lines)
of each component of the parameters with the priors (black dash-dot lines), with the posterior
mean marked by diamonds and the true values marked by asterisks. The posterior correlations are
⇢01 “ 0.20, ⇢04 “ ´0.19 and ⇢14 “ 0.57 in the case of Gaussian prior; and ⇢01 “ ´0.23, ⇢04 “ ´0.01
and ⇢14 “ ´0.05 in the case of uniform prior.

what was found for the Gaussian prior. Such differences are due to the different mechanism of
“regularization” by the two priors. The Gaussian prior eliminates the ill-posedness by regularizing
the ill-conditioned Fisher information matrix with the covariance of the prior. So, the information
in the likelihood, e.g. the bias and the correlations between p✓0, ✓1q and ✓4, are preserved in the
regularized posterior. The uniform prior, on the other hand, cuts the support of the degenerate
likelihood and rejects out-of-range samples. As a result, the correlation between ✓0 and ✓1 is
preserved in the regularized posterior because they feature similar variations, but the correlations
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Figure 7. Posteriors of the parameters in a typical simulation, with both the Gaussian and the uniform prior. The true values of the parameters,

as well as the data trajectory, are the same for both priors. The top row displays scatter plots of the samples (blue dots), with the true values

of the parameters shown by asterisks. The bottom row displays the marginal posteriors (blue lines) of each component of the parameters

and the priors (black dash-dot lines), with the posterior mean marked by diamonds and the true values marked by asterisks. The posterior

correlations are ρ01 = 0.20, ρ04 =−0.19 and ρ14 = 0.57 in the case of Gaussian prior; and ρ01 =−0.23, ρ04 =−0.01 and ρ14 =−0.05

in the case of uniform prior.

for θ0 and to the right for θ1). The marginal distribution of θ4 concentrates near the center of the prior with larger tail to the

right. The posterior has the most probability mass near the true values of θ0 and θ1, which are in the high probability region of

the prior. However, it has no probability mass near the true value of θ4 – which is of a low probability in the prior.

In the case of the uniform prior, the scatter plots show a concentration of probability near the boundaries of the physical

range. The marginal posteriors of θ0 and θ1 clearly deviate from the priors, concentrating near the parameter bounds (the upper5
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Figure 8: The marginal posteriors with a different set of true values for the parameters. The
marginal posteriors change little from those in Fig. 7.

between p✓0, ✓1q and ✓4 are weakened (Figure 7).

In practice, one is often interested in a point estimate of parameters. Commonly used point
estimators are the MAP and the posterior mean. Figures 7-8 show that both the MAP and
the posterior mean can be far away from the truth for Gaussian as well as uniform priors. In
particular, in the case of the uniform prior, the MAP values are further away from the truth than
the posterior mean. In the case of the Gaussian prior, the MAP values do not present a clear
advantage or disadvantage over the posterior mean.
Table 5a shows the means and standard deviations of the errors of the posterior mean and MAP
from 100 independent simulations. In each simulation and for each prior, we drew a parameter
sample from the prior and generated a trajectory of observations, and then estimated jointly the
parameters and states. The table shows that both posterior mean and MAP estimates are generally
biased, consistent with the biases in Figures 7 and 8. More specifically, in the case of the Gaussian
prior, the MAP has slightly smaller biases than the posterior mean, but the two have almost the
same variances. Both are negatively biased for ✓0 and slightly positively biased for ✓1 and ✓4. In
the case of the uniform prior, the MAP features biases and standard deviations which are about
50% larger than those of the posterior mean. Both estimators exhibit large positive biases in ✓0,
large negative biases in ✓1, and small positive biases in ✓4.

4.3 State estimates

The state estimation aims both to filter out the noise from the observed nodes and to estimate
the states of unobserved nodes. We access the state estimation by examining the ensemble of
the posterior trajectories in a typical simulation, for which we consider the marginal distributions
and the coverage probability of 90% credible intervals. We also examine the statistics of these
quantities in 100 independent simulations.

18

Figure 8. The marginal posteriors with a different set of true values for the parameters. The marginal posteriors change little from those in

Fig. 7.

bound for θ0 and the lower bound for θ1 in this realization); the marginal posterior of θ4 is close to the prior with slightly more

probability mass for large values.

Further tests show that the posterior is not sensitive to changes in the true values of the parameters. This fact is demonstrated

in Figure 8, which presents the marginal distributions for another set of true values of the parameters (but without changing the

priors). Though the data change when the true parameters change, the posteriors, in comparison with those Figure 7, change5

little for both cases of Gaussian and uniform prior.

The non-Gaussianity of the posterior (including the concentration near the boundaries), its insensitivity to changes in the

true parameter, and its limited reduction of uncertainty from the prior (Figures 7 - 8) are due to the degeneracy of the likelihood

distribution and to the strong regularization. Recall that the degenerate likelihood leads to MLEs with large variations and

biases, with the standard deviation of the estimators of θ0 and θ1 being about 10 times larger than those of θ4 (see Figure 3).10

As a result, when regularized by the Gaussian prior, the components θ0 and θ1, which are more under-determined by the like-

lihood, are constrained mainly by the Gaussian prior and therefore their marginal posteriors are close to their marginal priors.

In contrast, the component θ4 is forced to concentrate around the center of the prior but with a large tail. While dramatically

reducing the large uncertainty of θ0 and θ1 in the ill-conditioned likelihood, the regularized posterior still exhibits a slightly

larger uncertainty than the prior for these two components.15

In the case of the uniform prior, it is particularly noteworthy that the marginal posteriors of θ0 and θ1 differ more from

their priors than the parameter θ4. These results are the opposite of what was found for the Gaussian prior. Such differences

are due to the different mechanism of “regularization” by the two priors. The Gaussian prior eliminates the ill-posedness by
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Table 5. Means and standard deviations of the errors of the posterior mean and MAP in 100 independent simulations.

(a) The case of observing six of the 12 nodes.
θ0 θ1 θ4

Gauss Prior
Posterior mean -0.44 ± 0.58 0.09 ± 0.42 0.11 ± 0.20

MAP -0.32 ± 0.61 0.02 ± 0.42 0.03 ± 0.21

Uniform Prior
Posterior mean 0.75 ± 1.06 -0.31 ± 1.07 -0.02 ± 0.35

MAP 1.02 ± 1.53 -0.51 ± 1.49 0.15 ± 0.43
(b) The case of observing two of the 12 nodes.

θ0 θ1 θ4

Gauss Prior
Posterior mean -0.32 ± 0.61 -0.03 ± 0.37 0.10 ± 0.20

MAP -0.19 ± 0.67 -0.10 ± 0.38 0.02 ± 0.20

Uniform Prior
Posterior mean 0.77 ± 1.12 -0.39 ± 1.00 0.07 ± 0.36

MAP 1.06 ± 1.55 -0.61 ± 1.42 0.27 ± 0.42

regularizing the ill-conditioned Fisher information matrix with the covariance of the prior. So, the information in the likelihood,

e.g. the bias and the correlations between (θ0,θ1) and θ4, are preserved in the regularized posterior. The uniform prior, on the

other hand, cuts the support of the degenerate likelihood and rejects out-of-range samples. As a result, the correlation between

θ0 and θ1 is preserved in the regularized posterior because they feature similar variations, but the correlations between (θ0,θ1)

and θ4 are weakened (Figure 7).5

In practice, one is often interested in a point estimate of parameters. Commonly used point estimators are the MAP and the

posterior mean. Figures 7-8 show that both the MAP and the posterior mean can be far away from the truth for Gaussian as

well as uniform priors. In particular, in the case of the uniform prior, the MAP values are further away from the truth than the

posterior mean. In the case of the Gaussian prior, the MAP values do not present a clear advantage or disadvantage over the

posterior mean.10

Table 5(a) shows the means and standard deviations of the errors of the posterior mean and MAP from 100 independent

simulations. In each simulation and for each prior, we drew a parameter sample from the prior and generated a trajectory of

observations, and then estimated jointly the parameters and states. The table shows that both posterior mean and MAP estimates

are generally biased, consistent with the biases in Figures 7 and 8. More specifically, in the case of the Gaussian prior, the MAP

has slightly smaller biases than the posterior mean, but the two have almost the same variances. Both are negatively biased for15

θ0 and slightly positively biased for θ1 and θ4. In the case of the uniform prior, the MAP features biases and standard deviations

which are about 50% larger than those of the posterior mean. Both estimators exhibit large positive biases in θ0, large negative

biases in θ1, and small positive biases in θ4.
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Figure 9: The ensemble of sample trajectories of the state at an observed node. Top row: the
sample trajectories (in cyan) concentrate around the true trajectory (in black dash-asterisk). The
true trajectory is well-estimated by the ensemble mean (in blue dash-diamond), and is mostly
enclosed by the one-standard-deviation band (in magenta dash-dot lines). The relative error of the
ensemble mean along the trajectory is 0.7% and 0.8%, filtering out 30% and 20% of the observation
noise, respectively. Bottom row: histograms of samples at three instants of time: t “ 20, t “ 60
and t “ 100. The histograms show that the samples concentrate around the true states.

The coverage probability (CP), the proportion of the states whose 90% credible intervals contain
the true values, is 95% in the Gaussian prior case and 92% for the uniform prior in the above
simulation. The target probability is 90% as in this case 90% of the true values would be covered
by 90% credible intervals. The values indicate statistically meaningful uncertainty estimates, for
example larger uncertainty ranges at nodes with higher mean errors. The slight over-dispersiveness,
i.e. higher CPs than the target probabilities, might be a result of the large uncertainty in the
parameter estimates.
Table 6a shows the means and standard deviations of the relative errors and CPs in state estimation
by the posterior mean in 100 independent simulations, averaging over observed and unobserved
notes. The relative errors at each time t are computed by averaging the error of the ensemble
mean (relative to the true value) over all the nodes. The relative error of the trajectory is the
average over all times along the trajectory. The relative errors are 1.14% and 2.39% respectively
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Figure 9. The ensemble of sample trajectories of the state at an observed node. Top row: the sample trajectories (in cyan) concentrate around

the true trajectory (in black dash-asterisk). The true trajectory is well-estimated by the ensemble mean (in blue dash-diamond), and is mostly

enclosed by the one-standard-deviation band (in magenta dash-dot lines). The relative error of the ensemble mean along the trajectory is

0.7% and 0.8%, filtering out 30% and 20% of the observation noise, respectively. Bottom row: histograms of samples at three instants of

time: t= 20, t= 60 and t= 100. The histograms show that the samples concentrate around the true states.

4.3 State estimates

The state estimation aims both to filter out the noise from the observed nodes and to estimate the states of unobserved nodes.

We access the state estimation by examining the ensemble of the posterior trajectories in a typical simulation, for which we

consider the marginal distributions and the coverage probability of 90% credible intervals. We also examine the statistics of

these quantities in 100 independent simulations.5

We present the ensemble of posterior trajectories at an observed node in Figure 9 and at an unobserved node in Figure

10. In each of these figures, we present the ensemble mean with a one-standard-deviation band, in comparison with the true
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Figure 10: The ensemble of sample trajectories of the state at an unobserved node. The ensembles
present a large uncertainty in both cases of priors, but the posterior means achieve relative errors
0.8% and 3.3% in cases of Gaussian and uniform priors respectively. The one-standard-deviation
band covers the true trajectory at most times. Bottom row: the histogram of samples at three
time instants, showing that the samples concentrate around the true states. Particularly, in the
case of the Gaussian prior, the peaks of the histogram are close to the true states, even when the
histograms form a multi-mode distribution.

for the cases of Gaussian and uniform prior. These numbers are a result of having averaged over
the observed and unobserved nodes. Note that the relative errors are similar at different times
t “ p20, 60, 100q, indicating that the MCMC is able to ameliorate the degeneracy of the SMC to
faithfully sample the posterior of the states.
In the Gaussian prior case, the CPs are above the target probability in the 100 independent
simulations with a mean of 96%. This supports the finding from above that the posteriors are
slightly over-dispersive due to the large uncertainty in the parameter estimates. The standard
deviation is very small with 2% which indicates the robustness of the Gaussian prior model. In
the uniform prior case, the CPs are much lower with a mean of 73%. This might be a result of
larger biases compared to the Gaussian prior case which are not compensated by larger uncertainty
estimates. In addition, the standard deviation is much higher in the uniform prior case with 31%.
This shows that this case is less robust than the Gaussian prior case.
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Figure 10. The ensemble of sample trajectories of the state at an unobserved node. The ensembles exhibit a large uncertainty in both cases

of priors, but the posterior means achieve relative errors of 0.8% and 3.3% in cases of Gaussian and uniform priors respectively. The one-

standard-deviation band covers the true trajectory at most times. Bottom row: the histogram of samples at three time instants, showing that

the samples concentrate around the true states. Particularly, in the case of the Gaussian prior, the peaks of the histogram are close to the true

states, even when the histograms form a multi-mode distribution.

trajectories, superimposed on the ensembles of all sample trajectories at these nodes. We also present histograms of samples at

three instants of time: t= 20, t= 60 and t= 100.

Figure 9 shows that the trajectory of the observed node is well estimated by the ensemble mean, with a relative error of

0.7%. Recall that the observation noise leads to a relative error of about 1%, so the posterior filters out 30% of the noise.

Also note that the ensemble quantifies the uncertainty of the estimation, with the true trajectory being mostly enclosed within5

a one-standard-deviation band around the ensemble mean. Further, the histograms of samples at the three time instants show

that the ensemble generally concentrates near the truth. In the Gaussian prior case, the peak of the histogram decreases as time

increases. partially due to the degeneracy of SMC when we trace back the particles in time. In the uniform prior case, the

ensembles are less concentrated than those in the Gaussian case, due to the wide spread of the parameter samples (Figure 7).
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Figure 10 shows sample trajectories of an unobserved node. Despite the fact that the node is unobserved, the posterior means

have relative errors of 0.8% and 3.3% in cases of Gaussian and uniform priors respectively, with a one-standard-deviation band

covering the true trajectory at most times. While the sparse observations do cause large uncertainties for both priors, the

histograms of samples show that the ensembles concentrate near the truth. Particularly, in the case of Gaussian prior, the peaks

of the histogram are close to the true states, even when the histograms form a multi-modal distribution due to the degeneracy5

of SMC.

We find that the posterior is able to filter out the noise in the observed nodes and reduce the uncertainty in the unobserved

nodes from the climatological distribution. In particular, in the case of the Gaussian prior, the ensemble of posterior samples

concentrates near the true state at both observed and unobserved nodes and substantially reduces the uncertainty. In the case of

the uniform prior, the ensemble of posterior samples spreads more widely, and only slightly reduces the uncertainty.10

The coverage probability (CP), the proportion of the states whose 90% credible intervals contain the true values, is 95% in

the Gaussian prior case and 92% for the uniform prior in the above simulation. The target probability is 90% as in this case

90% of the true values would be covered by 90% credible intervals. The values indicate statistically meaningful uncertainty

estimates, for example larger uncertainty ranges at nodes with higher mean errors. The slight over-dispersiveness, i.e. higher

CPs than the target probabilities, might be a result of the large uncertainty in the parameter estimates.15

Table 6 shows the means and standard deviations of the relative errors and CPs in state estimation by the posterior mean in

100 independent simulations, averaging over observed and unobserved notes. The relative errors at each time t are computed

by averaging the error of the ensemble mean (relative to the true value) over all the nodes. The relative error of the trajectory is

the average over all times along the trajectory. The relative errors are 1.14% and 2.39% respectively for the cases of Gaussian

and uniform prior. These numbers are a result of averaging over the observed and unobserved nodes. Note that the relative20

errors are similar at different times t= (20,60,100), indicating that the MCMC is able to ameliorate the degeneracy of the

SMC to faithfully sample the posterior of the states.

In the Gaussian prior case, the CPs are above the target probability in the 100 independent simulations with a mean of

96%. This supports the finding from above that the posteriors are slightly over-dispersive due to the large uncertainty in the

parameter estimates. The standard deviation is very small with 2% which indicates the robustness of the Gaussian prior model.25

In the uniform prior case, the CPs are much lower with a mean of 73%. This might be a result of larger biases compared to

the Gaussian prior case which are not compensated by larger uncertainty estimates. In addition, the standard deviation is much

higher in the uniform prior case with 31%. This shows that this case is less robust than the Gaussian prior case.

5 Discussion

5.1 Observing fewer nodes30

We tested the consequences of having sparser observations in space, e.g. observing only two out of the 12 nodes. In the

Gaussian prior case, in a typical simulation with the same true parameters and observation data as in Section 4.2, the relative

error in state estimation increases slightly, from 0.7% to 0.8% for the observed node and from 0.8% to 1.1% for the unobserved
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Table 6. Means and standard deviations of the relative errors of the posterior mean trajectories of all nodes and the relative errors at three

instants of time, computed from 100 independent simulations. In the last column, the mean and standard deviations of CPs are given in

percent.

(a) The case of observing six out of the 12 nodes.
Trajectory t= 20 t= 60 t= 100 CP

Gaussian Prior (%) 1.14 ± 0.41 1.11 ± 0.47 1.09 ± 0.47 1.07 ± 0.46 96±2

Uniform Prior (%) 2.39 ± 1.59 2.44 ± 1.64 2.42 ± 1.66 2.41 ± 1.63 73±31
(b) The case of observing two out of the 12 nodes.

Trajectory t= 20 t= 60 t= 100 CP

Gaussian Prior (%) 1.43 ± 0.44 1.38 ± 0.53 1.43 ± 0.51 1.33 ± 0.54 92±6

Uniform Prior (%) 2.46 ± 1.28 2.47 ± 1.35 2.49 ± 1.33 2.47 ± 1.34 75±25

Table 6: Means and standard deviations of the relative errors of the posterior mean trajectories
of all nodes and the relative errors at three instants of time, computed from 100 independent
simulations. In the last column, the mean and standard deviations of CPs are given in percent.

Trajectory t “ 20 t “ 60 t “ 100 CP
Gaussian Prior (%) 1.14 ˘ 0.41 1.11 ˘ 0.47 1.09 ˘ 0.47 1.07 ˘ 0.46 96˘2
Uniform Prior (%) 2.39 ˘ 1.59 2.44 ˘ 1.64 2.42 ˘ 1.66 2.41 ˘ 1.63 73˘31

(a) The case of observing six out of the 12 nodes.

Trajectory t “ 20 t “ 60 t “ 100 CP
Gaussian Prior (%) 1.43 ˘ 0.44 1.38 ˘ 0.53 1.43 ˘ 0.51 1.33 ˘ 0.54 92˘6
Uniform Prior (%) 2.46 ˘ 1.28 2.47 ˘ 1.35 2.49 ˘ 1.33 2.47 ˘ 1.34 75˘25

(b) The case of observing two out of the 12 nodes.
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Figure 11: The case of observing 2 out of the 12 nodes: marginal posteriors of ✓. With the same
true parameters and the same observation dataset as in Figure 7, the marginal posteriors have
slightly wider supports.

5 Discussion

5.1 Observing fewer nodes

We tested the consequences of having sparser observations in space, e.g. observing only two out
of the 12 nodes. In the Gaussian prior case, in a typical simulation with the same true parameters
and observation data as in Section 4.2, the relative error in state estimation increases slightly, from
0.7% to 0.8% for the observed node and from 0.8% to 1.1% for the unobserved node. As a result,
the overall error increases. The parameter estimates show small but noticeable changes (Figure
11): the posteriors of the parameters have slightly wider support and the posterior means and
MAPs exhibit slightly larger errors than those in Section 4.2.
We also ran 100 independent simulations to investigate sampling variability in the state and pa-
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Figure 11. The case of observing 2 out of the 12 nodes: marginal posteriors of θ. With the same true parameters and the same observation

dataset as in Figure 7, the marginal posteriors have slightly wider supports.

node. As a result, the overall error increases. The parameter estimates show small but noticeable changes (see Figure 11): the

posteriors of the parameters have slightly wider support and the posterior means and MAPs exhibit slightly larger errors than

those in Section 4.2.

We also ran 100 independent simulations to investigate sampling variability in the state and parameter estimates. Table 6(b)

reports the means and standard deviations of the relative errors of the posterior mean trajectory, and CPs for state estimation5

in these simulations. The Gaussian prior case shows small increases in both the means and the standard deviations of errors,

as well as slightly lower and less robust CPs. This confirms the results quoted above for a typical simulation. The uniform

prior case shows almost negligible error and CP increases. Table 5(b) reports the mean and standard deviations of the posterior
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means and MAP for parameter estimation in these simulations. Small changes in comparison to the results in Table 5(a) are

found. These small changes are due to the strong regularization that has been introduced to overcome the degeneracy of the

likelihood.

5.2 Observing a longer trajectory.

When the length N of the trajectory of observation increases, the exponent of the regularized posterior (19), viewed as a5

function of θ only, tends to its expectation with respect to the ergodic measure of the system, i.e. 1
NCy1:N (θ,u1:N ) N→∞−−−−→

E[Cy1:N (θ,u1:N )] almost surely. As a result, the marginal posterior tends to be stable as N increases. This result indicates that

an increase of data size has a limited effect on the regularized posterior of parameters. This fact is verified by numerical tests

with N = 1000, in which the marginal posteriors only have a slightly wider support than those in Figure 7 with N = 100.

In general, the number of observations needed for the posterior to reach a steady state depends on the dimension of the10

parameters and the speed of convergence to the ergodic measure of the system. Here we have only three parameters and the

SEBM converges to its stationary measure exponentially (in fewer than 10 time steps), therefore N = 100 is large enough to

make the posterior be close to the steady state.

When the trajectory is long, a major issue is the computational cost from sampling the posterior of the states. Note that as

N increases, the dimension of the states in the posterior increases, demanding a longer Markov chain to explore the target15

distribution. In numerical tests with N = 1000, the correlation length of the Markov chain is at least 100, about four times the

correlation length found for N = 100. Therefore, to obtain the same number of effective samples as before, we would need a

Markov chain with length at least four times the previous length, say, L= 4×104. The computational cost increases linearly in

NL, with each step requiring an integration of the SPDE. The high computational cost, an instance of the well-known “curse of

dimensionality”, renders the direct sampling of the posterior unfeasible. Two groups of methods could reduce the computational20

cost and make the Bayesian inference feasible. The first group of methods, dynamical model reduction, exploits the low-

dimensional structure of the stochastic process to develop low-dimensional dynamical models which efficiently reproduce the

statistical-dynamical properties needed in the SMC (see e.g. Chorin and Lu, 2015; Lu et al., 2017; Chekroun and Kondrashov,

2017; Khouider et al., 2003, and the references therein). The other group of methods approximates the marginal posterior of the

parameter by reduced order models for the response of the data to parameters (see e.g. Marzouk and Najm, 2009; Branicki and25

Majda, 2013; Cui et al., 2015; Chorin et al., 2016; Lu et al., 2015; Jiang and Harlim, 2018)). In a paleoclimate reconstruction

context, the number of observations will generally be determined by available observations and the length of the reconstruction

period rather than by computational considerations. We leave these further development of efficient sampling methods for long

trajectories as a direction of future research.

5.3 Estimates of the nonlinear function30

One goal of parameter estimation is to identify the nonlinear function gθ (specified in (2)) in the SEBM. The posterior of the

parameters also quantifies the uncertainty in the identification of gθ. Figure 12 shows the nonlinear function gθ associated with

the true parameters and with the MAPs and posterior means presented in Figure 7, superposed on an ensemble of the nonlinear

23
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Figure 12: Top row: The true nonlinear function g✓ and its estimators using posterior mean
and MAP, superposed on the ensemble of all estimators using the samples. Bottom row: The
distribution of the equilibrium state ue (i.e. the zero of the nonlinear function g✓p¨q) and the
distribution of dg✓

du
pueq, with ✓ being samples of the prior and of the posterior.

5.3 Estimates of the nonlinear function

One goal of parameter estimation is to identify the nonlinear function g✓ (specified in (2.2)) in the
SEBM. The posterior of the parameters also quantifies the uncertainty in the identification of g✓.
Figure 12 shows the nonlinear function g✓ associated with the true parameters and with the MAPs
and posterior means presented in Figure 7, superposed on an ensemble of the nonlinear function
evaluated with all the samples. Note that in the Gaussian prior case, the true and estimated
functions g✓ are close even though ✓4 is estimated with large biases by either the posterior mean or
by the MAP. In the uniform prior case, the posterior mean has a smaller error than the MAP and
leads to a better estimate of the nonlinear function. In either case, the large band of the ensemble
represents a large uncertainty in the estimates.
For the Gaussian prior, neither the posterior distribution of the equilibrium state ue (for which
g✓pueq “ 0) nor of the feedback strength dg✓{dupueq are substantially changed from the corre-
sponding priors. Both experience only a small reduction of uncertainty. In contrast, the posterior
distributions are narrower than the priors for the uniform prior case - although the posterior means
and MAPs are both biased.

24

Figure 12. Top row: The true nonlinear function gθ and its estimators using posterior mean and MAP, superposed on the ensemble of all

estimators using the samples. Bottom row: The distribution of the equilibrium state ue (i.e. the zero of the nonlinear function gθ(·)) and the

distribution of dgθ
du

(ue), with θ being samples of the prior and of the posterior.

function evaluated with all the samples. Note that in the Gaussian prior case, the true and estimated functions gθ are close even

though θ4 is estimated with large biases by either the posterior mean or by the MAP. In the uniform prior case, the posterior

mean has a smaller error than the MAP and leads to a better estimate of the nonlinear function. In either case, the large band

of the ensemble represents a large uncertainty in the estimates.

For the Gaussian prior, neither the posterior distribution of the equilibrium state ue (for which gθ(ue) = 0) nor of the5

feedback strength dgθ/du(ue) are substantially changed from the corresponding priors. Both experience only a small reduction

of uncertainty. In contrast, the posterior distributions are narrower than the priors for the uniform prior case - although the

posterior means and MAPs are both biased.

6 Conclusions and future work

We have investigated the joint state-parameter estimation of a nonlinear stochastic energy balance model (SEBM) motivated10

by the problem of spatial-temporal paleoclimate reconstruction from sparse and noisy data, for which parameter estimation is

an ill-posed inverse problem. We introduced strongly regularized posteriors to overcome the ill-posedness by restricting the
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parameters and states to physical ranges and by normalizing the likelihood function. We considered both a uniform prior and a

more informative Gaussian prior based on the physical ranges of the parameters. We sampled the regularized high-dimensional

posteriors by a Particle Gibbs with Ancestor Sampling (PGAS) sampler that combines Markov Chain Monte Carlo (MCMC)

with an optimal particle filter to exploit the forward structure of the SEBM.

Results show that the regularization overcomes the ill-posedness in parameter estimation and leads to physical posteriors5

quantifying the uncertainty in parameter-state estimation. Due to the ill-posedness, the posterior of the parameters features a

relatively large uncertainty. This result implies that there can be a large uncertainty in point estimators such as the posterior

mean or the maximum a posteriori (MAP), the latter of which corresponds to the minimizer in a variational approach with

regularization. Despite the large uncertainty in parameter estimation, the marginal posteriors of the states generally concentrate

near the truth, reducing the uncertainty in state reconstruction. In particular, the more informative Gaussian prior leads to much10

better estimations than the uniform prior: the uncertainty in the posterior is smaller, the MAP and posterior mean have smaller

errors in both state and parameter estimates, and the coverage probabilities are higher and more robust.

Results also show that the regularized posterior is robust to spatial sparsity of observations, with sparser observations leading

to slightly larger uncertainties due to less information. However, due to the need of regularization to overcome ill-posedness,

the uncertainty in the posterior of the parameters cannot be eliminated by increasing the number of observations in time. There-15

fore, we suggest alternative approaches, such as re-parametrization of the nonlinear function according to the climatological

distribution or nonparametric Bayesian inference (see e.g. Müller and Mitra, 2013; Ghosal and Van der Vaart, 2017) to avoid

ill-posedness.

The ill-posedness of the parameter estimation problem for the model we have considered is of particular interest because the

form of the nonlinear function gθ(u) is not arbitrary but is motivated by the physics of the energy budget of the atmosphere. The20

fact that wide ranges of the parameters θi are consistent with the “obserations” even in this highly idealized setting indicates

that surface temperature observations themselves may not be sufficient to constrain physically-important parameters such as

albedo, graybody thermal emissivity, or air-sea exchange coefficients separately. While state-space modeling approaches allow

reconstruction of past surface climate states, it may be the case that the associated climate forcing may not contain sufficient

information to extract the relative contributions of the individual physical processes that produced it.25

Appendix A: Technical details of the estimation procedure

A1 Discretization of the SEBM

Finite element representation in space We discretize the SEBM in space by finite element methods (see e.g. Alberty et al.,

1999). Denote by {φi(ξ)}dbi=1 the finite element basis functions, and approximate the solution u(t,ξ) by

udb(t,ξ) =
db∑

i=1

ûi(t)φi(ξ). (A1)30
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The coefficients ûi are determined by the following weak Galerkin projection of the SEBM (1)

〈udb(t, ·),φ〉= 〈u0,φ〉− ν
t∫

0

〈∇udb(s, ·),∇φ〉ds+

t∫

0

〈gθ(udb(s, ·)),φ〉ds+

t∫

0

〈f(s, ·),φ〉, (A2)

where φ is a continuously differentiable compactly supported test function and the integral
∫ t

0
〈f(s, ·),φ〉 is an Itô integral.

For convenience, we write this Galerkin approximate system in vector notation. Denote

U(t) = (û1(t), . . . , ûdb(t))
T
, (A3)5

Φ(ξ) = (φ1(ξ), . . . ,φdb(ξ))
T
, (A4)

udb(t,ξ) = UT (t)Φ(x) = ΦT (x)U(t). (A5)

Taking φ= φj , j = 1, . . . ,db in equation (A2) and using the symmetry of the inner product, we obtain a stochastic integral

equation for the coefficient U(t) ∈ Rdb :

〈Φ,ΦT 〉U(t) = 〈Φ,ΦT 〉U(0)− ν 〈∇Φ,∇ΦT 〉
t∫

0

U(s)ds+

t∫

0

〈gθ(UTn Φ),Φ〉ds+

t∫

0

〈f(s, ·),Φ〉. (A6)10

To simplify notation, we denote the mass and stiffness matrices by

M0 = 〈Φ,ΦT 〉, M1 = ν 〈∇Φ,∇ΦT 〉, (A7)

which are symmetric, tri-diagonal, positive definite matrices in Rdb×db , and we denote the nonlinear term as

Gθ(U(t)) := 〈gθ(UT (t)Φ),Φ〉. (A8)

The above stochastic integral equation can then be written as15

M0U(t) = M0U(0)−M1

t∫

0

U(s)ds+

t∫

0

Gθ(U(t))ds+

t∫

0

〈f(s, ·),Φ〉. (A9)

The mesh on the sphere and the matrices M0 and M1 are computed with the R package INLA (Lindgren and Rue, 2015;

Bakka et al., 2018).

Representation of the nonlinear term. The parametric nonlinear functional Gθ(U(t)) is approximated using the finite el-

ements. We approximate each spatial integration over an element-triangle in 〈gθ(UTn Φ),Φ〉 by the volume of the triangular20

pyramid whose height is the value of the nonlinear function at the center of the element-triangle Tk, i.e.
∫
gθ(u(t,ξ))φl(ξ)dξ ≈

∑

Tk⊂supp(φl)

Area(Tk)
3

gθ

(∑

i

Ui(t)φi(ξck)

)
, (A10)

where ξck is the center of the triangle Tk. In the discretized system, we assume that this approximation has a negligible error

and take it as our nonlinear functional. In vector notation, it reads

Gθ(U(t)) =AT gθ(AU(t)), (A11)25
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where AT =
(

Area(Tk)
3

)
∈ Rdb×de with de denoting the number of triangle elements and the matrix A = (φi(ξck)) ∈ Rde×db ,

such that the function gθ(AU(t)) is interpreted as element-wise evaluation. For the nonlinear function gθ in (2), we can write

the above nonlinear term as

Gθ(U(t)) =
∑

k=0,1,4

θkAT (AU(t))◦k, (A12)

where ◦k denotes entry-wise product of the array.5

Representation of the stochastic forcing. Following Lindgren et al. (2011), the stochastic forcing f(t,ξ) is approximated by

its linear finite element truncation,

f(t,ξ) =
db∑

i=1

φi(ξ)fi(t) (A13)

with the stochastic processes {fi(t), i= 1, . . . ,db} being spatially correlated and white in time. Note that for ν = 0.1 and ρ > 0

in the Matérn covariance (4), the process f(t,ξ) is the stationary solution of the stochastic Laplace equation10

(ρ−2− ν4)f(t,ξ) = σfW (t,ξ), (A14)

where W is a spatio-temporal white noise (Whittle, 1954, 1963). Computationally efficient approximations of the forcing

process are obtained using the GMRF approximation of Lindgren et al. (2011) which generatesF (t)≡ (f1(t),f2(t), . . . ,fdb(t))

by solving (A14). That is, using the above finite element notation, we solve for each time t the linear system

(ρ−2M0 + M1)F (t) = σf 〈Φ,W (t, ·)〉, (A15)15

where the random vector 〈Φ,W (t, ·)〉 := (〈φ1,W (t, ·)〉, . . . ,〈φdb ,W (t, ·)〉) is Gaussian with mean 0 and covariance M0. Solv-

ing (A15) yields

F (t) ∼ N
(
0,σ2

fM
−1
ρ M0M−1

ρ

)
, (A16)

where Mρ := (ρ−2M0 + M1).

Semi-backward Euler time integration. Equation (A9) is integrated in time by a semi-backward Euler scheme20

M∆tUn+1 = M0Un + ∆tGθ(Un) +
√

∆tM0Fn, (A17)

where Un is the approximation of U(tn) with tn = n∆t, and {Fn} is a sequence of iid random vectors with distribution

N
(

0,σ2
fM

−1
ρ M0M−1

ρ

)
, with the matrix M∆t denoting

M∆t := M0 + ∆tM1. (A18)

Efficient generation of the Gaussian field. It follows from (A15) that M0Fn is Gaussian with mean zero and covariance25

M0M−1
ρ M0M−1

ρ M0. Note that while Mρ is a sparse matrix, its inverse matrix M−1
ρ is not. To efficiently use the sparse-

ness of Mρ, following Lindgren et al. (2011), we approximate M0 by M̂0 := diag(〈φi,1〉) and compute the noise M0Fn
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by C−1N (0, Id), where C is the Cholesky factorization of the inverse of the covariance matrix (called precision matrix)

M̂−1
0 MκM̂−1

0 MκM̂−1
0 .The precision matrix is a sparse representation of the inverse of the covariance. Therefore, the matrix

C is also sparse and the noise sequence can be efficiently generated.

In summary, we can write the discretized SEBM in the form

Un+1 = µθ(Un) +Wn (A19)5

where the deterministic function µθ(·) is given by

µθ(Un) = M−1
∆tM0Un +

∑

k=0,1,4

θkGθ,k(Un), (A20)

with Gθ,k(Un) := ∆tM−1
∆tAT (AU(t))◦k, and {Wn} is a sequence of iid Gaussian noise with mean 0 and covariance R:

R = σ2
f∆tM−1

∆tC
−1C−TM−T

∆t . (A21)

A2 SMC with optimal importance sampling10

SMC methods approximate the target density pθ(u1:N |y1:N ) sequentially by weighted random samples called particles (here-

after we drop the subindex θ to simplify notation)

p̂(u1:N |y1:N ) :=
M∑

m=1

wmn δUm1:n(du1:N ). (A22)

with
∑M
m=1w

m
n = 1. These weighted samples are drawn sequentially by importance sampling based on the recurrent formation

15

p(u1:n|y1:n) = p(u1:n−1|y1:n−1)
p(yn|un)p(un|un−1)

p(yn|y1:n−1)
. (A23)

More precisely, suppose that at time n, we have weighted samples {Um1:n−1,w
m
n−1}Mm=1. One first draws a sample Umn from

an easy to sample importance density q(un|yn,Umn−1) that approximates the “incremental density” which is proportional to

p(yn|un)p(un|Umn−1) for each m= 1, . . . ,M , and computes incremental weights

αmn =
p(Umn |Umn−1)p(yn|Umn )

q(Umn |yn,Umn−1)
, (A24)20

which account for the discrepancy between the two densities. One then assigns normalized weights {wmn ∝ wmn−1α
m
n }Mm=1 to

the concatenated sample trajectories {Um1:n}Mm=1.

A clear drawback of the above procedure is that all but one of the weights {wmn } will become close to zero as the number of

iterations increases, due to the multiplication and normalization operations. To avoid this, one replaces the unevenly weighted

samples {(Umn−1,w
m
n−1)} by uniformly weighted samples from the approximate density p̂θ(un−1|y1:N−1). This is the well-25

known resampling technique. In summary, the above operations are carried out as follows:
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(i) draw random indices {Amn−1}Mm=1 according to the discrete probability distribution F(·|w1:M
n−1) on the set {1, . . . ,M},

which is defined as

F(An−1 = k|w1:M
n−1) = wkn−1, for k = 1, . . . ,M. (A25)

(ii) for each m, draw a sample Umn from q(un|yn,U
Amn−1
n−1 ) and set Um1:n := (U

Amn−1
n−1 ,Umn );

(iii) compute and normalize the weights5

αmn := αn(Um1:n) =
p(Umn |U

Amn−1
n−1 )p(yn|Umn ))

q(Umn |yn,U
Amn−1
n−1 )

, wmn :=
αmn∑M
k=1α

k
n

. (A26)

The above SMC sampling procedure is called sequential importance sampling with resampling (SIR) (Doucet and Johansen,

2011, see e.g.[) and is summarized in Algorithm 1.

Algorithm 1 Sequential importance sampling with resampling (SIR).

Require: Observation y1:N and ensemble size M . For the SEBM, we use the optimal importance density q in (A27). Each step is for

m= 1, . . . ,M .

Ensure: Weighted samples {(Um1:N ,wmN )}Mm=1.

1: Draw samples Um1 ∼ q(u1|y1).

2: Compute and normalize the weights: αm1 =
pθ(U

m
1 )pθ(y1|Um1 ))

q(Um1 |y1)
, wm1 =

αm1∑M
k=1α

k
1

.

3: for n= 2 :N do

4: Draw samples Amn−1 ∼ F(·|w1:M
n−1) with F defined in (A25).

5: Draw samples Umn ∼ q(un|yn,U
Amn−1
n−1 ) and set Um1:n := (U

Amn−1
n−1 ,Umn ).

6: Compute the normalized weights wmn according to (A26).

7: end for

Optimal importance sampling. Note that the conditional transition density of the states pθ(un+1|un) in (7) is Gaus-

sian and the observation model in (8) is linear and Gaussian. These facts allow for a Gaussian optimal importance density10

q(un|yn,Umn−1) that is proportional to p(yn|un)p(un|Umn−1) for each m= 1, . . . ,M :

q(un|yn,Umn−1)∼N (µmn ,Σ) (A27)

with the mean µmn and the covariance Σ given by

µmn = µ(Umn−1) + RHTQ−1(yn−Hµ(Umn−1)), (A28)

Σ = R−RHT
(
Q + HRHT

)−1
HR. (A29)15

Drawbacks of SMC. While the resampling technique prevents wmn from being degenerate at each current time n, SMC algo-

rithms suffer from the degeneracy (or particle depletion) problem: the marginal distribution p̂(un|(y1:N )) becomes concentrated

on a single particle as N−n increases because each resampling step reduces the number of distinct particles of un. As a result,

the estimate of the joint density p(u1:N |y1:N ) of the trajectory deteriorates as time N increases.
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A3 Particle Gibbs and PGAS

The framework of particle MCMC introduced in Andrieu et al. (2010) is a systematic combination of SMC and MCMC

methods, exploiting the strengths of both techniques. Among the various particle MCMC methods, we focus on the particle

Gibbs sampler (PG) that uses a novel conditional SMC update (Andrieu et al., 2010), as well as its variant, the particle Gibbs

with ancestor sampling (PGAS) sampler (Lindsten et al., 2014), because they are best fit for sampling our joint parameter and5

state posterior.

The PG and PGAS samplers use a conditional SMC update step to realize the transition between two steps of the Markov

chain while ensuring that the target distribution will be the stationary distribution of the Markov chain. The basic procedure of

a PG sampler is as follows:

– Initialization: draw θ(1) from the prior distribution p(θ). Run an SMC algorithm to generate weighted samples {Um1:N ,w
m
N }Mm=110

for pθ(1)(u1:N |y1:N ) and draw U1:N (1) from these weighted samples.

– Markov chain iteration: for l = 1, · · · ,L− 1,

1. Sample θ(l+ 1) from the marginal posterior p(θ|y1:N ,U1:N (l)) given by (14).

2. Run a conditional SMC algorithm, conditioned on U1:N (l), which is called the reference trajectory. That is, in the

SMC algorithm, the M -th particle is required to move along the reference trajectory by setting UMn = Un(l). Draw15

other samples from the importance density, and normalize the weights and resample all the particles as usual. This

leads to weighted samples {Um1:N ,w
m
N }Mm=1 with UM1:N = U1:N (l).

3. Draw U1:N (l+ 1) from the above weighted samples.

– Return the Markov chain {θ(l),U1:N (l)}Ll=1.

The conditional SMC algorithm is the core of PG samplers. It retains the reference path throughout the resampling steps by20

deterministically setting UM1:N = U1:N (l) and AMn =M for all n, while sampling the remaining M − 1 particles according to

a standard SMC algorithm. The reference path interacts with the other paths by contributing a weight wMn . This is the key to

ensuring that the PG Markov chain converges to the target distribution. A potential risk of the PG sampler is that it yields a

poorly mixed Markov chain, because the reference trajectory tends to dominate the SMC ensemble trajectories.

The PGAS sampler increases the mixing of the chain by connecting the reference path to the history of other particles by25

assigning an ancestor to the reference particle at each time. This is accomplished by drawing a sample for the ancestor index

AMn−1 of the reference particle, which is referred to as ancestor sampling. The distribution of the index AMn−1 is determined by

the likelihood of connecting Un(l) to the particles {Umn−1}Mm=1, in other words, according to weights

α̃mn−1|n = wmn−1pθ(l+1)(Un(l)|Umn−1)p(yn|Un(l)),

w̃mn−1|n =
α̃mn−1∑M
k=1 α̃

k
n−1

(A30)30
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The above weight α̃mn−1|n can be seen as a posterior probability, where the importance weight wmn−1 is the prior probability of

the particle Umn−1, and the product p
θ(l+1)(Un(l)|Umn−1)p(yn|Un(l)) is the likelihood that Un(l) originates from Umn−1 condi-

tional on observation yn. In short, the PGAS sampler assigns the reference particle Un(l) an ancestor AMn−1 that is drawn from

the distribution F(AMn−1 = k|w̃1:M
n−1|n) = w̃kn−1|n.

The above conditional SMC with ancestor sampling within PGAS is summarized in Algorithm 2.5

Algorithm 2 Conditional SMC with ancestor sampling for PGAS sampler.

Require: U1:N (l) and θ := θ(l+ 1).

Ensure: U(1:N)(l+ 1).

Initialize the particles in SMC:

1: Set UM1 = U1(l) and draw samples {Um1 }M−1
m=1 ∼ qθ(x1|y1).

2: Compute the weights αm1 =
pθ(U

m
1 )pθ(y1|Um1 ))

qθ(U
m
1 |y1)

, wm1 =
αm1∑M
k=1α

k
1

for m= 1 :M .

3: for n= 2 :N do

4: Draw samples {Amn−1}M−1
m=1 ∼ F(·|w1:M

n−1).

5: Set UMn = Un(t) and draw samples Umn ∼ q(xn|yn,U
Amn−1
n−1 ) for m= 1 :M − 1.

6: Draw AMn−1 ∼ F(·|w̃1:M
n−1|n), where the weights in w̃1:M

n−1|n are computed in (A30).

7: Set Um1:n := (U
Amn−1
1:n−1 ,U

m
n ) for m= 1 :M .

8: Compute the normalized weights wmn according to (A26).

9: end for

10: Draw AN with F(·|w1:M
N ).

11: return U(1:N)(l+ 1) = UAN1:N .
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